
Browser-based Hyperbolic Visualization of Graphs
Jacob Miller*

University of Arizona
Stephen Kobourov†

University of Arizona
Vahan Huroyan‡

University of Arizona

Figure 1: Example layouts of the same graph, generated by the three hyperbolic graph embedding algorithms discussed in
this paper: inverse projection (left), force-directed (center) and hyperbolic-MDS (right).

ABSTRACT

Hyperbolic geometry offers a natural ‘focus+context’ for data visual-
ization and has been shown to underlie real-world complex networks.
However, current hyperbolic network visualization approaches are
limited to special types of networks and do not scale to large datasets.
With this in mind, we designed, implemented, and analyzed three
methods for hyperbolic visualization of networks in the browser
based on inverse projections, generalized force-directed algorithms,
and hyperbolic multi-dimensional scaling (H-MDS). A comparison
with Euclidean MDS shows that H-MDS produces embeddings with
lower distortion for several types of networks. All three methods can
handle node-link representations and are available in fully functional
web-based systems.

Index Terms: Graph drawing; Hyperbolic geometry; Non-
Euclidean embedding; Stochastic gradient descent

1 INTRODUCTION

Node-link representations of graphs in the 2-dimensional Euclidean
plane are the most typically used graph visualizations. The structure
of many graphs, notably planar graphs, can be realized well in the
plane, but others are better represented in non-Euclidean geome-
tries. For example, 3-dimensional polytopes are well represented in
spherical space, while large hierarchies such as trees can be cleanly
embedded in hyperbolic space. Standard hyperbolic projections into
Euclidean space also provide a natural ‘focus+context’ view of the
graph, with parts of the graph near the center of the view shown
large and those far from the center progressively smaller, with the
entire graph being in the view.

A recent work [35] suggests that hyperbolic geometry underlies
complex networks, in a similar way as spherical geometry underlies
geographic data.

Though there has been some work on visualizing hierarchies

*e-mail: jacobmiller1@email.arizona.edu
†e-mail: kobourov@cs.arizona.edu
‡e-mail: vahanhuroyan@math.arizona.edu

using hyperbolic space in the browser [25], there are no tools that
support browser-based hyperbolic visualization of general graphs.

We describe three methods for laying out graphs in the 2-
dimensional hyperbolic space, H2. The first method relies on tak-
ing a pre-computed Euclidean layout of a graph and projecting it
into hyperbolic space, providing standard map interactions, such as
pan, zoom, re-center, click and drag. We implement this method
in a web based system that provides several layout algorithms for
node-link and map-based visualization. This allows us to view
and interact with GMaps, MapSets, BubbleSets, and LineSets in
hyperbolic space. The second method makes use of a generaliza-
tion of force-directed algorithms to Riemannian geometries [34].
We exploit the locally Euclidean properties of hyperbolic space so
that with the help of Möbius transformations we can accurately
model the forces. In particular, this approach allows us to compute
layouts where distances between nodes in hyperbolic space corre-
spond to the underlying graph-theoretic distances between them.
The third method attempts to directly realize graph distances in H2

through a hyperbolic generalization of multidimensional scaling
(MDS) [16, 61]. For this method we adapt stochastic gradient de-
scent (SGD) to hyperbolic space, as SGD has been shown to be
efficient and produce high-quality layouts in Euclidean space [64].
To the best of our knowledge, there are no prior methods to adapt
Euclidean layouts to hyperbolic space, nor any hyperbolic SGD
approaches. All three methods are available online. The projection
method is available through GMap at http://gmap.cs.arizona.edu.
The other two methods are available as a webapp on GitHub at
https://github.com/Mickey253/hyperbolic-space-graphs.

2 RELATED WORK

The graph layout problem typically involves placing nodes and
routing edges in 2-dimensional Euclidean space. Force-directed
algorithms model the system as a set of springs and attempt to
balance the forces on nodes. Both their conceptual simplicity and
their generally aesthetically pleasing results have made this class
of algorithms particularly useful for computing graph layouts [33].
Force-directed algorithms have been generalized to Riemannian
geometries, (e.g., spherical and hyperbolic) by computing tangent
planes at each node [34].

To the best of our knowledge, there are no browser-based tools
for visualizing general graphs in hyperbolic space. Table 1 gives an

71

2022 IEEE 15th Pacific Visualization Symposium (PacificVis)

2165-8773/22/$31.00 ©2022 IEEE
DOI 10.1109/PacificVis53943.2022.00016

20
22

 IE
EE

 1
5t

h
Pa

ci
fic

 V
isu

al
iza

tio
n

Sy
m

po
siu

m
 (P

ac
ifi

cV
is)

 |
 9

78
-1

-6
65

4-
23

35
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

PA
CI

FI
CV

IS
53

94
3.

20
22

.0
00

16

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

overview of previous work in hyperbolic network visualization. One
of the earliest approaches by Lamping et al. [38] embeds hierarchies
into the hyperbolic plane by recursively placing each node’s children
evenly spaced around the arc of a circle. This is possible thanks to the
exponential expansion intrinsic to the geometry. They make use of
the Poincaré projection to display the graph on the computer monitor,
which also provides the now well known ‘focus+context’ effect.
Navigating the hierarchy is done by re-centering the projection at a
new node in the hyperbolic plane. The embedding can be computed
in linear time and arbitrary graphs can also be visualized using this
approach by utilizing a spanning tree of the graph and ‘filling in’ the
rest of the edges later.

Table 1: Hyperbolic browsing systems

System Date Description

H2 Tree Browser 1995 2 dimensions, hierarchy viewer

HVS 2007 Hiearchy visualization application

Js InfoVis Toolkit 2013 Web-based data vis suite

Treebolic 2014 Java Hyperbolic Poincaré visualization

d3-hypertree 2018 Hyperbolic tree visualization library

H3 2000 3 dimensions, hierarchy viewer

walrus 2000 Re-implementation of H3 in Java

h3py 2015 Re-implementation of H3 in Python

A bioinformatics-motivated java application by Bingham and Su-
darsanam [6] uses a similar approach to visualize phylogenetic trees.
Andrews et al. [2] also rely on Lamping et al.’s work in their Hierar-
chy Visualization System as do Baumgartner and Waugh [4] who
visualize Roget’s thesaurus. The Java InfoVis Toolkit also imple-
ments a hyperbolic hierarchy browser [5] and TreeBolic implements
the hyperbolic tree layout [9]. More recently, Glatzhofer developed
a hyperbolic hierarchy browser utilizing d3.js, a javascript graphics
library which works in the browser, and can display large hierarchies
smoothly with different layout algorithms [24–26].

While most prior work considers the 2-dimensional hyperbolic
plane, Munzner has also used 3D hyperbolic space to visualize hier-
archies with the help of the Beltrami-Klein projection [40–43]. Here
geodesics are mapped to straight lines rather than the circular arcs of
the Poincaré projection. Munzner’s work has been re-implemented
in two subsequent systems: Walrus [29] and h3py [63].

Hyperbolic space has been explored in the context of non-linear
dimensionality reduction, specifically multi-dimensional scaling
(MDS). The idea is to match pairwise similarities with distances in
an embedding: the more similar two elements are, the closer they
are in the embedding. The Euclidean distance is traditionally used
as a closeness metric. Computing a graph layout can be interpreted
as an MDS problem by treating the graph theoretic distance between
pairs of nodes as their pairwise distance metric.

There are three different types of MDS: classical, metric, and non-
metric (although these labels are not used consistently in different
fields) Here, we refer to Torgerson’s MDS as classical MDS, where
the input distances are converted to similarities, and principal com-
ponent analysis (PCA) is used to obtain the embedding [57]. Metric
MDS minimizes a loss function, commonly known as stress [53].
Finally, in non-metric MDS the input distances are not necessarily
distances, but can be ranks [36].

Classical MDS has been explored in hyperbolic space, by re-
placing the conversion to similarities with an appropriate hyperbolic
scaling function [14,52]. Using a similar idea, metric and non-metric
MDS have been generalized to hyperbolic space by incorporating
hyperbolic geodesic distance into the cost function [59–61, 65].

It has been shown that some graphs can be embedded with lower
error in hyperbolic space than in Euclidean space [7]. Zhou and
Sharpee [65] show that hyperbolic MDS (H-MDS) can be used to
detect the underlying geometry of a dataset, when comparing its

Figure 2: An example of a GMap Euclidean layout (left) and its
hyperbolic realization (right) via inverse projection.

embedding error to Euclidean non-metric MDS. They go further to
show that the underlying space of genomes is hyperbolic. Krioukov
et al.’s [35] work indicates that hyperbolic geometry may underlie
complex networks and hierarchical networks, such as phylogenetic
trees and the internet.

Greedy embeddings also appear to have a close relationship with
hyperbolic geometry. Indeed, any connected, finite graph admits a
greedy embedding in hyperbolic space, which is not generally true
in Euclidean geometry [31]. Greedy embeddings of graphs allow
for greedy routing, which is particularly useful when a node may
not know the global topology, but only its own position and that of
its neighbors such as in social networks and the internet [22].

An open-source hyperbolic visualization tool, RogueViz [11],
includes different projections and educational tools, although its
restriction to tessellations of the hyperbolic plane makes it less than
ideal for general graphs. Self-organizing maps have been generalized
to hyperbolic space, but are restricted to lattices [45].

Stress-based approaches have been explored in other Riemannian
spaces such as the sphere [18, 46] and the torus [12, 13], as different
spaces provide different visualization advantages. Unlike in the
plane, on the sphere one can avoid issues such as central/peripheral
placement, and on the torus larger classes of graphs can be drawn
without crossings. Human subject studies show that these spaces are
no worse than Euclidean space for common navigation tasks [13,18].

One can achieve a similar focus+context effect by using lens
effects [55,56]. In particular, at first glance the Poincaré disk appears
to resemble a fisheye lens. However, a lens effect generally applies
only to a subset of the visible data, scaling or warping it to bring it
into focus. The focus+context view is applied across all of the data
in the Poincaré disk, with an exponential decrease in data size away
from the center, but the entirety of the object remaining in view.

It is worth mentioning that there are also theoretical limits on the
effectiveness of hyperbolic embeddings for general graphs. Some
graphs can be embedded trivially with a low, constant embedding
error (e.g., as cycles and square lattices) but have non-trivial em-
bedding error in the hyperbolic plane [21, 58]. However, other
graphs such as trees and hyperbolic tilings can be embedded better
in hyperbolic space than in Euclidean space. For example, while
Euclidean geometry only admits 3 regular tessellations (triangles,
squares, hexagons), the hyperbolic plane admits infinitely many.

Zheng et al. show that stochastic gradient descent (SGD) can
be used effectively to solve MDS for graph layout in Euclidean
space [64]. In this paper we show that SGD can also be deployed in
hyperbolic space and produces good embeddings.

3 PROJECTION-BASED METHOD

The first method we present is based on the idea of starting with
a precomputed layout and projecting it to the hyperbolic plane.
The implementation is available on the web, in a browser based

72

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Effect of learning rate on various classes of graphs
(average over 15 runs each). Graphs used are a 10x10 grid (top
left), 50 node random trees (top right), the Les Mis graph [32]
(bottom left), and the colors graph (bottom right).

optima, but still converge as � goes to 0. We set a maximum and a
minimum learning rate, a function s(t) that outputs a learning rate

� at time step ti. s(t0) = � max = d2
max and s(tmax = � min = � d2

min
where dmax and dmin correspond to the longest and shortest shortest
paths of the input graph, respectively.

Euclidean SGD works particularly well with an exponential de-
cay learning rate [64]. To test if hyperbolic SGD behaves the same
way, we compare this exponetial decay learning rate with two ad-
ditional schedules: �(1/ t) and �(1/

�
t) schedules. We define the

exponential schedule according to [64] using � maxeŠbt , the tradi-
tional �(1/ t) as a

1+bt and the �(1/
�

t) schedule as a�
1+bt

. We set

a = d2
min and b = Š(tmax)log � min

� max
.

As expected, the �(1/ t) schedule struggles to step out of lo-
cal minima. It is somewhat surprising that the �(1/

�
t) schedule

appears to achieve lower minima for some classes of graphs; see
Fig. 10. This could be due to the function’s larger learning rates
allowing the system to avoid local minima.

5.1.4 Stopping Condition

Gradient descent algorithms terminate either if they converge or if
they reach a maximum number of iterations. The convergence is
reached when the change in objective function value is less than
some tolerance. However, computing the stress value at each itera-
tion is time consuming and we avoid doing this for SGD. Instead,
we measure the max change in pairwise distance per iteration.

For our web focused application, we primarily investigate the use
of fixed number of iterations, although one can select to iterate until
convergence under ‘advanced options.’ We set tmax = 20 using the
exponential learning rate described above, after experimenting with
different input graphs. We observe that there is little improvement
after 20 iterations; see Fig. 12

5.2 Evaluation

Similar to SGD for Euclidean space, we see similar improvements in
time and quality using SGD in hyperbolic space. Experiments were
conducted using a desktop machine with an Intel Core i7-3770 CPU
@ 3.40GHz x 8 processor, 32 GB of memory, and NVidia GeForce
gt 640 graphics running Ubuntu 20.04.3 LTS. Both the GD and SGD
algorithms are implemented in Python, making use of the Numpy,
Graph-tool, and Numba libraries.

Figure 11: Left: Distortion on triangular lattice graph shown in
Fig. 14. Hyperbolic space gets worse as the scale increases, but
Euclidean can embed the graph with constant error. Right: The
effect of scale on the sphere on a cube graph. For this example,
there is a noticeable optimum at around � /3 (note that the diam-
eter of a cube graph is 3).

Figure 12: Average stress plots of GD and SGD. Initial stress val-
ues are omitted.

As mentioned in section 5.1.4, while the overall complexity of
SGD is no different than GD, the run time is significantly faster; see
Fig 9. We conduct this experiment by generating a single random
graph on n nodes, then computing an embedding using the classic
GD and SGD, and recording the average time over 30 runs. Each
graph of n nodes has 3n edges selected at random. At 500 nodes,
GD takes over a minute but SGD takes only about 1.5 seconds.

Consistent with the findings in Euclidean space, hyperbolic SGD
also performs better than GD in regards to quality; see Fig. 12. We
show a selection of 4 graphs from the sparse matrix collection [17]
and plot the stress minimization curves as each algorithm proceeds.
Often just a few iterations of SGD is enough to ‘untangle’ the layout
and the curve often bottoms out quite quickly.

5.2.1 Comparison across geometries

The stress function (Eq. 1) offers a natural evaluation for the quality
of a graph embedding, based on how well pairwise distances in the
embedding match the corresponding graph distances. While the
quadratic term in the stress equation makes it suitable for gradient
descent, it also makes it somewhat disingenuous to compare across
different graphs and different embedding spaces. With this in mind,
we measure how well a graph embedding captures the underlying
graph structure using the related distortion measure; see [52].

Distortion =
1

�|V |
2

� �
i, j

���X i Š Xj� Š d i j
��

di j
(2)

77

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Figure 13: A full binary tree (left) and the Les Mis [32] graph
(right), an example of a small complex (social) network.

Similar to stress, perfectly capturing all pairwise distances will result
in distortion of 0. It has been shown that some classes of graphs,
such as trees, can be embedded in the hyperbolic plane with lower
distortion value than in Euclidean space [7, 35]. We numerically
demonstrate that the SGD algorithm for H-MDS achieves lower dis-
tortion values for trees. It has also been shown that some classes of
graphs, such as cycles, can be embedded in the Euclidean plane with
constant distortion but cannot be embedded with constant distortion
in the hyperbolic space. We demonstrate both of these properties for
trees and cycles; see Fig. 15.

The ability to compare graph embeddings in various spaces (Eu-
clidean, Spherical and Hyperbolic) creates an interesting application
of MDS. Similar to how Zhou and Sharpee detect the geometry of a
dataset [65], we can determine which of the three consistent geome-
tries is best suited for a given graph, by performing Euclidean MDS,
Spherical-MDS and H-MDS, and comparing their corresponding
distortion values. Table 2 shows the distortion values for several
classes of graphs for Euclidean space, Spherical space and Hyper-
bolic space. The cube graph (and other graphs that correspond to 3D
platonic solids) embeds best in spherical space. Lattices (as well as
paths and cycles) embed best in Euclidean space. Trees (and other
hierarchies) embed best in hyperbolic space.

5.2.2 Scale Invariance

It is known that the Euclidean MDS is invariant to scale. That is,
given a distance matrix and its corresponding embedding by MDS,
if one scales all distances by the same scalar and applies MDS to
the scaled distances, the achieved embedding should be the scaled
version of the initial one. However, this property does not hold for
spherical-MDS (S-MDS) and H-MDS. This can perhaps be most
intuitively seen by looking at the non-Euclidean analogues of the
Pythagorean theorem (assuming unit curvature).
Euclidean: a2 + b2 = c2,
Spherical: cos(a) + cos(b) = cos(c),
Hyperbolic: cosh(a) + cosh(b) = cosh(c).
While we can multiply both a and b by the same constant k to
obtain k2c2 in Euclidean space, the same property does not hold for
hyperbolic and spherical spaces.

So then, our objective function for H-MDS becomes

Stress = �
i< j

wi j(gdist(Xi,Xj) Š � di j)2,

where the gdist((Xi,Xj)) is the geodesic distance in hyperbolic space
between nodes Xi and Xj.

Spherical space is even more problematic when considering em-
bedding scales, as for any given radius of the sphere, the maximum
distance that one can achieve on the sphere is finite (rather than
infinite in Euclidean and hyperbolic space). This leads to a natural
heuristic scale value: � = �

dmax
, where dmax is the diameter (longest

Figure 14: Triangular lattice with scaling factor � = 1 (left) and
optimized � = 0.22 (right).

Figure 15: Euclidean and hyperbolic embedding distortion on
rings (left) and trees (right). It can be seen that the number of
nodes in a ring in Euclidean space does not matter, but distortion
gets worse with size of the ring in hyperbolic space. The inverse
is true for trees, they can be embedded with constant distortion in
hyperbolic space but not Euclidean.

shortest path) of the graph. This normalizes d to a maximum distance
of � , which is the longest distance possible on the unit sphere.

In the hyperbolic space, although one can achieve arbitrarily large
distances, similar to the S-MDS, scaling the data or considering
a different hyperbolic radius can drastically affect the embedding.
Thus, there is a need to find an appropriate scaling parameter � for
which the achieved embedding best captures the underlying graph
distances. If � is very small, the layout occupies a small fraction
of the hyperbolic space, resulting in an embedding that is similar to
Euclidean space, and thus does not capture the focus+context effect.
If � is large, then most of the graph is located at the periphery,
making it hard to see. We can find a good scaling parameter for
any given graph using binary search for the value of � that achieves
lowest embedding distortion and this is indeed an available option
under ‘advanced options.’ We show an example of an optimized �
compared to a naive � = 1; see Fig. 14. By default we set � = 10

dmax
,

where dmax is the length of the longest shortest path in the graphs.
This caps the largest distance to a hyperbolic unit length of 10 and
the resulting embeddings tend to capture the focus+context effect
and do not place large parts of the graph near the periphery.

Table 2: Distortion on small graphs across geometries. Averaged
over 10 runs.

Graph Spherical Euclidean Hyperbolic

Cube 0.1296 0.2437 0.2645

Lattice 0.2421 0.1486 0.2306

Tree 0.1944 0.1284 0.0682

6 DISCUSSION, LIMITATIONS AND FUTURE WORK

We described three methods for visualizing graphs in hyperbolic
space, which are illustrated in Fig. 1. We present a small-scale

78

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 08,2022 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

